Pages

MANAGEMENT INPUT/OUTPUT DAN PENJADWALAN DISK


A. Klasifikasi Perangkat I/O
Pengolahan Perangkat Input/Output merupakan pengolahan perangkat lunak yang mengatasi penggunaan perangkat masukan dan keluaran. Pengelolaan perangkat I/O merupakan aspek perancangan sistem operasi yang terluas karena beragamnya peralatan dan begitu banyaknya aplikasi dari peralatan-peralatan itu.
Manajemen I/O mempunyai fungsi, di antaranya:
·                 Mengirim perintah ke perangkat I/O agar menyediakan layanan.
·                 Menangani interupsi peralatan I/O
·                 Menangani kesalahan pada peralatan I/O
·                 Memberi interface ke pemakai.
Berdasarkan sasaran komunikasi, klasifikasi perangkat I/O atau divice dibagi menjadi beberapa tipe. Tipe-tipe device secara umum dibagi menjadi device penyimpanan (disk, tape), transmission, device (peralatan yang cocok untuk komunikasi dengan peralatan-peralatan jarak jauh seperti modem) dan human-interface device (Peralatan yang terbaca oleh manusia seperti keyboard, mouse). Device- device tersebut dikontrol oleh instruksi I/O. Alamat-alamat yang dimiliki oleh device akan digunakan oleh direct I/O instruction dan memory-mapped I/O .
Klasifikasi lain yang dapat dilakukan terhadap peralatan I/O adalah berdasarkan unit transfer yang dilakukan perangkat I/O, yaitu sbb:
a)     Perangkat berorientasi blok (block-oriented devices) Peralatan mentransfer dari dan ke  peralatan dengan satuan transfer adalah satu blok (sekumpulan karakter) yant telah ditentukan.
b)     Perangkat berorientasi aliran karakter (character-oriented devices) Peralatan mentransfer dari dan ke peralatan berupa aliran karakter.



B.  Teknik Pengoperasian Perangkat I/O
  Teknik Pengoperasian Perangkat I/O meliputi:
1)    Perangkat I/O terprogram (programmed I/O)
Merupakan perangkat I/O komputer yang dikontrol oleh program. Contohnya, perintah mesin in, out, move. Perangkat I/O terprogram tidak sesuai, untuk pengalihan data dengan kecepatan tinggi karena dua alasan yaitu:
Ø  Memerlukan overhead (ongkos) yang tinggi, karena beberapa perintah program
harus dieksekusi untuk setiap kata data yang dialihkan antara peralatan eksternal dengan memori utama.
Ø   Banyak peralatan periferal kecepatan tinggi memiliki mode operasi sinkron,
yaitu pengalihan data dikontrol oleh clock frekuensi tetap, tidak tergantung
CPU.
2)   Perangkat berkendalikan interupsi (Interrupt I/O)
Interupsi lebih dari sebuah mekanisme sederhana untuk mengkoordinasi pengalihan I/O. Konsep interupsi berguna di dalam sistem operasi dan pada banyak aplikasi kontrol di mana pemrosesan rutin tertentu harus diatur dengan seksama,
a. Mekanisme Dasar Interupsi
 Ketika CPU mendeteksi bahwa sebuah controller telah mengirimkan sebuah sinyal ke interrupt request line (membangkitkan sebuah interupsi), CPU kemudian menjawab interupsi tersebut (juga disebut menangkap interupsi)dengan menyimpan beberapa informasi mengenai state terkini CPU --contohnya nilai instruksi pointer, dan memanggil interrupt handler agar handler tersebut dapat melayani controller atau alat yang mengirim interupsi tersebut.

b.  Fitur Tambahan pada Komputer Modern

 Pada arsitektur komputer modern, 3 fitur disediakan oleh CPU dan interrupt controller (pada perangkat keras) untuk dapat menangani interrupsi dengan lebih bagus. Fitur-fitur ini antara lain adalah kemampuan menghambat sebuah proses interrupt handling selama prosesi berada dalam critical state, efisiensi penanganan interupsi sehingga tidak perlu dilakukan polling untuk mencari device yang mengirimkan interupsi, dan fitur yang ketiga adalah adanya sebuah konsep multilevel interupsi sedemikian rupa sehingga terdapat prioritas dalam penanganan interupsi (diimplementasikan dengan interrupt priority level system) .

c.  Interrupt Request Line

 Pada peranti keras CPU terdapat kabel yang disebut interrupt request line , kebanyakan CPU memiliki dua macam interrupt request line , yaitu nonmaskable interrupt dan maskable interrupt. Maskable interrupt dapat dimatikan / dihentikan oleh CPU sebelum pengeksekusian deretan critical instruction (critical instruction sequence) yang tidak boleh diinterupsi. Biasanya, interrupt jenis ini digunakan oleh device controller untuk meminta pelayanan CPU.

d.  Interrupt Vector dan Interrupt Chaining

 Sebuah mekanisme interupsi akan menerima alamat interrupt handling routine yang spesifik dari sebuah set, pada kebanyakan arsitektur komputer yang ada sekarang ini, alamat ini biasanya berupa sekumpulan bilangan yang menyatakan offset pada sebuah tabel (biasa disebut interrupt vector ).Tabel ini menyimpan alamat- alamat interrupt handler spesifik di dalam memori. Keuntu ngan dari pemakaian vektor adalah untuk mengura ngi kebutuhan akan sebuah interrupt handler yang harus men cari semua kemungkinan sumber interupsi untuk menemukan pengirim interupsi.
 Akan tetapi, interrupt vector memiliki hambatan karena pada kenyataannya, komputer yang ada memiliki device (dan interrupt handler ) yang lebih banyak dibandingkan dengan jumlah alamat pada interrupt vector. Karena itulah, digunakanlah teknik interrupt chaining dimana setiap elemen dari interrupt vector menunjuk / merujuk pada elemen pertama dari sebuah daftar interrupt handler. Dengan teknik ini, overhead yang dihasilkan oleh besarnya ukuran tabel dan inefisiensi dari penggunaan sebuah interrupt handler (fitur pada CPU yang telah disebutkan sebelumnya) dapat dikurangi, sehingga keduanya menjadi kurang lebih seimbang.

e.  Penyebab Interupsi

 Interupsi dapat disebabkan berbagai hal, antara lain exception,page fault , interupsi yang diki- rimkan oleh device controllers , dan system call .Exception adalah suatu kondisi dimana terjadi sesuatu / dari sebuah operasi didapat hasil tertentu yang dianggap khusus sehingga harus mendapat perhatian lebih, contoh nya pembagian dengan 0 (nol), pengaksesan alamat memori yang restricted atau bahkan tidak valid, dan lain-lain. System call adalah sebuah fungsi pada aplikasi (perangkat lunak) yang dapat mengeksekusikan instruksi khusus berupa software interrupt atau trap.
3)   DMA (Direct Memory Address)
Merupakan suatu pendekatan alternatif yang digunakan sebagai unit pengaturan khusus yang disediakan untuk memungkinkan pengalihan blok data secara langsung antara peralatan eksternal dan memori utama tanpa intervensi terus menerus oleh CPU.

a.     Transfer DMA

 Untuk memulai sebuah transfer DMA, host akan menuliskan sebuah DMA command block yang berisi pointer yang menunjuk ke sumber transfer, pointer yang menunjuk ke tujuan / destinasi transfer, dan jumlah byte yang ditransfer, ke memori. CPU kemudian menuliskan alamat command block ini ke DMA controller, sehingga DMA controller dapat kemudian mengoperasikan bus memori secara langsung dengan menempatkan alamat-alamat pada bus tersebut untuk melakukan trans fer tanpa bantuan CPU.
 Tiga Langkah Dalam Transfer DMA :
   1.  Prosesor menyiapkan DMA transfer dengan menyedia  kan data-data dari device  , operasi yang akan  ditampilkan, alamat memori yang menjadi sumber  dan tujuan data, dan banyaknya byte yang di  transfer. 
   2.  DMA controller  memulai operasi (menyiapkan bus,  menyediakan alamat, menulis dan membaca data),  sampai seluruh blok sudah di transfer. 
   3.  DMA controller  meng-interupsi prosesor, dimana  selanjutnya akan ditentukan tindakan berikutnya. 

 Pada dasarnya, DMA mempunyai dua metode yang berbeda dalam mentransfer data. Metode yang pertama adalah metode yang sangat baku dan simple disebut HALT, atau Burst Mode DMA, karena DMA controller memegang kontrol dari sistem bus dan men-transfer semua blok data ke atau dari memori pada single burst . Selagi transfer masih dalam progres, sistem mikroprosessor di-set idle, tidak melakukan instruksi operasi untuk menjaga internal register. Tipe operasi DMA seperti ini ada pada kebanyakan komputer.
 Metode yang kedua, mengikutsertakan DMA controller untuk memegang kontrol dari sistem bus untuk jangka waktu yang lebih pendek pada periode dimana mikroprosessor sibuk dengan operasi internal dan tidak membutuhkan akses ke sistem bus. Metode DMA ini disebut cycle stealing mode . Cycle stealing DMA lebih kompleks untuk diimplementasikan dibandingkan HALT DMA, karena DMA controller harus mempunyai kepintaran untuk merasakan waktu pada saat sistem bus terbuka.

b.       Handshaking

 Proses handshaking antara DMA controller dan device controller dilakukan melalui sepasang kabel yang disebut DMA- request dan DMA- acknowledge. Device controller mengirimkan sinyal melalui DMA- request ketika akan mentransfer data sebanyak satu word . Hal ini kemudian akan mengakibatkan DMA controller memasukkan alamat- alamat yang dinginkan ke kabel alamat memori, dan mengirimkan sinyal melalui kabel DMA- acknowledge. Setelah sinyal melalui kabel DMA- acknowledge diterima, device controller mengirimkan data yang dimaksud dan mematikan sinyal pada DMA-request .
 Hal ini berlangsung berulang-ulang sehingga disebut handshaking . Pada saat DMA controller mengambil alih memori, CPU sementara tidak dapat mengakses memori (dihalangi), walaupun masih dapat mengaksees data pada cache primer dan sekunder. Hal ini disebut cycle stealing, yang walaupun memperlambat komputasi CPU, tidak menurunkan kinerja karena memindahkan pekerjaan data transfer ke DMA controller meningkatkan performa sistem secara keseluruhan.

c.     Cara-cara Implementasi DMA

 Dalam pelaksanaannya, beberapa komputer menggunakan memori fisik untuk proses DMA , sedangkan jenis komputer lain menggunakan alamat virtual dengan melalui tahap "penerjemahan" dari alamat memori virtual menjadi alamat memori fisik, hal ini disebut direct virtual-memory address atau DVMA. Keuntungan dari DVMA adalah dapat mendukung transfer antara dua memory mapped device tanpa intervensi CPU.

C.   Penanganan Permintaan I/O

 Sistem Operasi yang modern mendapatkan fleksibilitas yang signifikan dari tahapan-tahapan tabel lookup di jalur diantara permintaan dan physical device controller. Kita dapat mengenalkan devicedan driver baru ke komputer tanpa harus meng-compile ulang kernelnya. Sebagai fakta, ada beberapa sistem operasi yang mampu untuk me-load device drivers yang diinginkan. Pada waktu boot, sistem mula-mula meminta bus piranti keras untuk menentukan device apa yang ada, kemudian sistem me-load ke dalam driver yang sesuai; baik sesegera mungkin, maupun ketika diperlukan oleh sebuah permintaan I/O.
 Sistem V UNIX mempunyai mekanisme yang menarik, yang disebut streams, yang membolehkan aplikasi untuk men-assemble pipeline dari kode driver secara dinamis. Sebuah stream adalah sebuah koneksi full duplex antara sebuah device driver dan sebuah proses user-level. Stream terdiri atas sebuah stream head yang merupakan antarmuka dengan user process, sebuah driver end yang mengontrol device, dan nol atau lebih stream modules diantara mereka. Modules dapat didorong ke stream untuk menambah fungsionalitas di sebuah layered fashion. Sebagai gambaran sederhana, sebuah proses dapat membuka sebuah alat port serial melalui sebuah stream, dan dapat mendorong ke sebuah modul untuk memegang edit input. Stream dapat digunakan untuk interproses dan komunikasi jaringan. Faktanya, di Sistem V, mekanisme soket diimplementasikan dengan stream.
 Berikut dideskripsikan sebuah lifecycle yang tipikal dari sebuah permintaan pembacaan blok.
1.    Sebuah proses mengeluarkan sebuah blocking read  system call ke sebuah file deskriptor dari berkas  yang telah dibuka sebelumnya. 
2.    Kode system-call di kernel mengecek  parameter untuk kebenaran. Dalam kasus input, jika data telah  siap di buffer cache, data akan dikembalikan ke proses dan  permintaan I/O diselesaikan. 
3.    Jika data tidak berada dalam buffer cache  , sebuah physical I/O  akan bekerja, sehingga proses akan dikeluarkan dari antrian jalan  (run queue) dan diletakkan di antrian  tunggu (wait queue) untuk alat, dan  permintaan I/O pun dijadwalkan.  Pada akhirnya, subsistem I/O  mengirimkan permintaan ke device driver.  Bergantung pada sistem operasi, permintaan dikirimkan melalui  call subrutin atau melalui pesan  in-kernel. 
4.    Device driver mengalokasikan ruang  buffer pada kernel untuk menerima  data, dan menjadwalkan I/O. Pada  akhirnya, driver mengirim perintah  ke device controller dengan menulis  ke register device control. 
5.    Device controller mengoperasikan  piranti keras device untuk melakukan  transfer data. 
6.    Driver dapat menerima status dan  data, atau dapat menyiapkan transfer DMA ke memori kernel. Kita  mengasumsikan bahwa transfer diatur oleh sebuah DMA  controller, yang meggunakan interupsi ketika trans-  fer selesai. 
7.    Interrupt handler yang sesuai mene-  rima interupsi melalui tabel vektor-interupsi, menyimpan sejumlah  data yang dibutuhkan, menandai device driver  , dan kembali dari interupsi. 
8.    Device driver menerima tanda,  menganalisa permintaan I/O mana yang  telah diselesaikan, menganalisa status permintaan, dan menandai  subsistem I/O kernel yang  permintaannya telah terselesaikan. 
9.    Kernel mentransfer data atau mengembalikan kode ke ruang alamat  dari proses permintaan, dan memindahkan proses dari antrian tunggu  kembali ke antrian siap. 
10.     Proses tidak diblok ketika dipindahkan ke antrian siap. Ketika  penjadwal (scheduler) mengembalikan  proses ke CPU, proses meneruskan eksekusi pada penyelesaian dari  system call. 



D.    Struktur Disk

 Disk menyediakan penyimpanan sekunder bagi sistem komputer modern. Magnetic tape sebelumnya digunakan sebagai media penyimpanan sekunder, tetapi waktu aksesnya lebih lambat dari disk. Oleh karena itu, sekarang tape digunakan terutama untuk backup ,untuk penyimpanan informasi yang tidak sering, sebagai media untuk mentransfer infromasi dari satu sistem ke sistem yang lain, dan untuk menyimpan sejumlah data yang terlalu besar untuk sistem disk.
 Disk drive modern dialamatkan sebagai suatu array satu dimensi yang besar dari blok lojik, dimana blok lojik merupakan unit terkecil dari transfer. Ukuran dari blok lojik biasanya adalah 512 bytes , walaupun sejumlah disk dapat diformat di level rendah (low level formatted) untuk memilih sebuah ukuran blok lojik yang berbeda, misalnya 1024 bytes.
 Array satu dimensi dari blok lojik dipetakan ke bagian dari disk secara sekuensial. Sektor 0 adalah sektor pertama dari trek pertama di silinder paling luar (outermost cylinder ). Pemetaan kemudian memproses secara berurutan trek tersebut, kemudian melalui trek selanjutnya di silinder tersebut, dan kemudian sisa silinder dari yang paling luar sampai yang paling dalam.
 Dengan menggunakan pemetaan, kita dapat -minimal dalam teori- mengubah sebuah nomor blok logikal ke sebuah alamat disk yang bergaya lama (old-style disk address) yang terdiri atas sebuah nomor silinder, sebuah nomor trek di silinder tersebut, dan sebuah nomor sektor di trek tersebut. Dalam prakteknya, adalah sulit untuk melakukan translasi ini, dengan 2 alasan. Pertama, kebanyakan disk memiliki sejumlah sektor yang rusak, tetapi pemetaan menyembunyikan hal ini dengan mensubstitusikan dengan sektor yang dibutuhkan dari mana-mana di dalam disk. Kedua, jumlah dari sektor per trek tidaklah konstan. Semakin jauh sebuah trek dari tengah disk, semakin besar panjangnya, dan juga semakin banyak sektor yang dipunyainya. Oleh karena itu,disk modern diatur menjadi zona-zona silinder. Nomor sektor per trek adalah konstan dalam sebuah zona. Tetapi seiring kita berpindah dari zona dalam ke zona luar, nomor sektor per trek bertambah. Trek di zona paling luar tipikalnya mempunyai 40 persen sektor lebih banyak daripada trek di zona paling dalam.
 Nomor sektor per trek telah meningkat seiring dengan peningkatan teknologi disk, dan adalah lazim untuk mempunyai lebih dari 100 sektor per trek di zona yang lebih luar dari disk. Dengan analogi yang sama, nomor silinder per disk telah meningkat, dan sejumlah ribuan silinder adalah tak biasa.

E.  Penjadwalan Disk

 Salah satu tanggung jawab sistem operasi adalah menggunakan hardware dengan efisien. Khusus untuk disk drives, efisiensi yang dimaksudkan di sini adalah dalam hal waktu akses yang cepat dan aspek bandwidth disk. Waktu akses memiliki dua komponen utama yaitu waktu pencarian dan waktu rotasi disk. Waktu pencarian adalah waktu yang dibutuhkan disk arm untuk menggerakkan head ke bagian silinder disk yang mengandung sektor yang diinginkan. Waktu rotasi disk adalah waktu tambahan yang dibutuhkan untuk menunggu rotasi atau perputaran disk, sehingga sektor yang diinginkan dapat dibaca oleh head. Pengertian Bandwidth adalah total jumlah bytes yang ditransfer dibagi dengan total waktu antara permintaan pertama sampai seluruh bytes selesai ditransfer. Untuk meningkatkan kecepatan akses dan bandwidth, kita dapat melakukan penjadwalan pelayanan atas permintaan I/O dengan urutan yang tepat.
 Sebagaimana kita ketahui, jika suatu proses membutuhkan pelayanan I/O dari atau menuju disk, maka proses tersebut akan melakukan system call ke sistem operasi. Permintaan tersebut membawa informasi-informasi antara lain:
  1. Apakah operasi input atau output
  2. Alamat disk untuk proses tersebut
  3. Alamat memori untuk proses tersebut
  4. Jumlah bytes yang akan ditransfer
 Jika disk drive beserta controller tersedia untuk proses tersebut, maka proses akan dapat dilayani dengan segera. Jika ternyata disk drive dan controller tidak tersedia atau sedang sibuk melayani proses lain, maka semua permintaan yang memerlukan pelayanan disk tersebut akan diletakkan pada suatu antrian penundaan permintaan untuk disk tersebut. Dengan demikian, jika suatu permintaan telah dilayani, maka sistem operasi memilih permintaan tertunda dari antrian yang selanjutnya akan dilayani.

a)   Penjadwalan FCFS

 Bentuk paling sederhana dalam penjadwalan disk adalah dengan sistem antrian (queue) atau First-come first-served (FCFS). Algoritma ini secara intrinsik bersifat adil, tetapi secara umum algoritma ini pada kenyataannya tidak memberikan pelayanan yang paling cepat. Sebagai contoh, antrian permintaan pelayanan disk untuk proses I/O pada blok dalam silinder adalah sebagai berikut: 98, 183, 37, 122, 14, 124, 65, 67. Jika head pada awalnya berada pada 53, maka head akan bergerak dulu dari 53 ke 98, kemudian 183, 37, 122, 14, 124, 65, dan terakhir 67, dengan total pergerakan head sebesar 640 silinder.
 Permasalahan dengan menggunakan penjadwalan jenis ini dapat diilustrasikan dengan pergerakan dari 122 ke 14 dan kembali lagi ke 124. Jika permintaan terhadap silinder 37 dan 14 dapat dikerjakan/dilayani secara bersamaan, baik sebelum maupun setelah permintaan 122 dan 124, maka pergerakan total head dapat dikurangi secara signifikan, sehingga dengan demikian pendayagunaan akan meningkat.

b.   Penjadwalan SSTF

 Sangat berasalasan jika kita menutup semua pelayanan pada posisi head saat ini, sebelum menggerakkan head ke tempat lain yang jauh untuk melayani suatu permintaan. Asumsi ini mendasari algoritma penjadwalan kita yang kedua yaitu shortest-seek-time-first (SSTF). Algoritma ini memilih permintaan dengan berdasarkan waktu pencarian atau seek time paling minimum dari posisi head saat itu. Karena waktu pencarian meningkat seiring dengan jumlah silinder yang dilewati oleh head, maka SSTF memilih permintaan yang paling dekat posisinya di disk terhadap posisi head saat itu.
 Perhatikan contoh antrian permintaan yang kita sajikan pada penjadwalan FCFS, permintaan paling dekat dengan posisi head saat itu (53) adalah silinder 65. Jika kita penuhi permintaan 65, maka yang terdekat berikutnya adalah silinder 67. Dari 67, silinder 37 letaknya lebih dekat ke 67 dibandingkan silinder 98, jadi 37 dilayani duluan. Selanjutnya, dilanjutkan ke silinder 14, 98, 122, 124, dan terakhir adalah 183. Metode penjadwalan ini hanya menghasilkan total pergerakan head sebesar 236 silinder -- kira-kira sepertiga dari yang dihasilkan penjadwalan FCFS. Algoritma SSTF ini memberikan peningkatan yang cukup signifikan dalam hal pendayagunaan atau performance sistem.
 Penjadwalan SSTF merupakan salah satu bentuk dari penjadwalan shortest-job-first (SJF), dan karena itu maka penjadwalan SSTF juga dapat mengakibatkan starvation pada suatu saat tertentu. Kita ketahui bahwa permintaan dapat datang kapan saja. Anggap kita memiliki dua permintaan dalam antrian, yaitu untuk silinder 14 dan 186. Selama melayani permintaan 14, kita anggap ada permintaan baru yang letaknya dekat dengan 14. Karena letaknya lebih dekat ke 14, maka permintaan ini akan dilayani dulu sementara permintaan 186 menunggu gilirannya. Jika kemudian berdatangan lagi permintaan-permintaan yang letaknya lebih dekat dengan permintaan terakhir yang dilayani jika dibandingkan dengan 186, maka permintaan 186 bisa saja menunggu sangat lama. Kemudian jika ada lagi permintaan yang lebih jauh dari 186, maka juga akan menunggu sangat lama untuk dapat dilayani.
 Walaupun algoritma SSTF secara substansial meningkat jika dibandingkan dengan FCFS, tetapi algoritma SSTF ini tidak optimal. Seperti contoh diatas, kita dapat menggerakkan head dari 53 ke 37, walaupun bukan yang paling dekat, kemudian ke 14, sebelum menuju 65, 67, 98, 122, dan 183. Strategi ini dapat mengurangi total gerakan head menjadi 208 silinder.

c.     Penjadwalan SCAN

 Pada algoritma SCAN, pergerakan disk arm dimulai dari salah satu ujung disk, kemudian bergerak menuju ujung yang lain sambil melayani permintaan setiap kali mengunjungi masing-masing silinder. Jika telah sampai di ujung disk, maka disk arm bergerak berlawanan arah, kemudian mulai lagi melayani permintaan-permintaan yang muncul. Dalam hal ini disk arm bergerak bolak-balik melalui disk.
 Kita akan menggunakan contoh yang sudah dibarikan diatas. Sebelum melakukan SCAN untuk melayani permintaan-permintaan 98, 183, 37, 122, 14, 124, 65, dan 67, kita harus mengetahui terlebih dahulu pergerakan head sebagai langkah awal dari 53. Jika disk arm bergerak menuju 0, maka head akan melayani 37 dan kemudian 14. Pada silinder 0, disk arm akan bergerak berlawanan arah dan bergerak menuju ujung lain dari disk untuk melayani permintaan 65, 67, 98, 122, 124, dan 183. Jika permintaan terletak tepat pada head saat itu, maka akan dilayani terlebih dahulu, sedangkan permintaan yang datang tepat dibelakang head harus menunggu dulu head mencapai ujung disk, berbalik arah, baru kemudian dilayani.
 Algoritma SCAN ini disebut juga algoritma lift/elevator, karena kelakuan disk arm sama seperti elevator dalam suatu gedung, melayani dulu orang-orang yang akan naik ke atas, baru kemudian berbalik arah untuk melayani orang-orang yang ingin turun ke bawah.
 Kelemahan algoritma ini adalah jika banyak permintaan terletak pada salah satu ujung disk, sedangkan permintaan yang akan dilayani sesuai arah arm disk jumlahnya sedikit atau tidak ada, maka mengapa permintaan yang banyak dan terdapat pada ujung yang berlawanan arah dengan gerakan disk arm saat itu tidak dilayani duluan? Ide ini akan mendasari algoritma penjadwalan berikut yang akan kita bahas.

d.    Penjadwalan C-SCAN

 Circular-SCAN adalah varian dari algoritma SCAN yang sengaja didesain untuk menyediakan waktu tunggu yang sama. Seperti halnya SCAN, C-SCAN akan menggerakkan head dari satu ujung disk ke ujung lainnya sambil melayani permintaan yang terdapat selama pergerakan tersebut. Tetapi pada saat head tiba pada salah satu ujung, maka head tidak berbalik arah dan melayani permintaan-permintaan, melainkan akan kembali ke ujung disk asal pergerakannya. Jika head mulai dari ujung 0, maka setelah tiba di ujung disk yang lainnya, maka head tidak akan berbalik arah menuju ujung 0, tetapi langsung bergerak ulang dari 0 ke ujung satunya lagi.

e.     Penjadwalan LOOK

 Perhatikan bahwa SCAN dan C-SCAN menggerakkan disk arm melewati lebar seluruh disk. Pada kenyataanya algoritma ini tidak diimplementasikan demikian (pergerakan melewati lebar seluruh disk). Pada umumnya, arm disk bergerak paling jauh hanya pada permintaan terakhir pada masing-masin arah pergerakannya. Kemudian langsung berbalik arah tanpa harus menuju ujung disk. Versi SCAN dan C-SCAN yang berprilaku seperti ini disebut LOOK SCAN dan LOOK C-SCAN, karena algoritma ini melihat dulu permintaan-permintaan sebelum melanjutkan arah pergerakannya.

f.      Pemilihan Algoritma Penjadwalan Disk

 Dari algoritma-algoritma diatas, bagaimanakah kita memilih algoritma terbaik yang akan digunakan? SSTF lebih umum dan memiliki prilaku yang lazim kita temui. SCAN dan C-SCAN memperlihatkan kemampuan yang lebih baik bagi sistem yang menempatkan beban pekerjaan yang berat kepada disk, karena algoritma tersebut memiliki masalah starvation yang paling sedikit. Untuk antrian permintaan tertentu, mungkin saja kita dapat mendefinisikan urutan akses dan pengambilan data dari disk yang optimal, tapi proses komputasi membutuhkan penjadwalan optimal yang tidak kita dapatkan pada SSTF atau SCAN.
 Dengan algoritma penjadwalan yang manapun, kinerja sistem sangat tergantung pada jumlah dan tipe permintaan. Sebagai contoh, misalnya kita hanya memiliki satu permintaan, maka semua algoritma penjadwalan akan dipaksa bertindak sama, karena algoritma-algoritma tersebut hanya punya satu pilihan dari mana menggerakkan disk head: semuanya berprilaku seperti algoritma penjadwalan FCFS.
 Perlu diperhatikan pula bahwa pelayanan permintaan disk dapat dipengaruhi pula oleh metode alokasi file. Sebuah program yang membaca alokasi file secara terus menerus mungkin akan membuat beberapa permintaan yang berdekatan pada disk, menyebabkan pergerakan head menjadi terbatas. File yang memiliki link atau indeks, dilain pihak, mungkin juga memasukkan blok-blok yang tersebar luas pada disk, menyebabkan pergerakan head yang sangat besar.
 Lokasi blok-blok indeks dan directory juga tidak kalah penting. Karena file harus dibuka sebelum digunakan, proses pembukaan file membutuhkan pencarian pada struktur directory, dengan demikian directory akan sering diakses. Kita anggap catatan directory berada pada awal silinder, sedangkan data file berada pada silinder terakhir. Pada kasus ini, disk head harus bergerak melewati sepanjang lebar disk. Membuat tempat penyimpanan sementara dari blok-blok indeks dan directory ke dalam memori dapat membantu mengurangi pergerakan disk arm, khususnya untuk permintaan membaca disk.
 Karena kerumitan inilah, maka algoritma penjadwalan disk harus ditulis dalam modul terpisah dari sistem operasi, jadi dapat saling mengganti dengan algoritma lain jika diperlukan. Baik SSTF maupun LOOK keduanya merupakan pilihan yang paling masuk akal sebagai algoritma yang paling dasar.

0 comments:

Posting Komentar